UA Bioengineer Awarded $1.5M by NIH to Study Regeneration of Tissue Damaged by Disease
The director of the National Institutes of Health, Francis S. Collins, announced today that Pak Kin Wong, UA professor of aerospace and mechanical engineering and BIO5 member, has won a $1.5 million NIH Director's New Innovator Award.
Wong's research aims to discover the rules that govern how biological tissues are formed from individual cells. In particular, Wong is investigating how to grow new tissue to replace that destroyed by disease.
"The research holds great promise in treating degenerative diseases by stimulating damaged tissues to repair themselves, or replacing them with engineered tissues when the body cannot heal itself," Wong said.
Collins announced the award Sept. 30 at the start of the Sixth Annual NIH Director's Pioneer Award Symposium in Bethesda, Md. This is the first time the award has been made to a researcher in any Arizona university.
"NIH is pleased to be supporting early-stage investigators from across the country who are taking considered risks in a wide range of areas in order to accelerate research," said Collins. "We look forward to the results of their work."
"It is a great honor to receive this prestigious award from NIH that supports exceptionally innovative biomedical research," Wong said. "With the support, we will be able to explore extremely challenging research problems that may produce important medical advances."
Wong is working with Professor Carol Gregorio, director of the Molecular Cardiovascular Research Program in the UA College of Medicine. "We are studying biological processes related to muscular dystrophy and cardiomyopathy," Wong said. "We are also exploring neurodegeneration."
Much of the research conducted by College of Engineering faculty involves collaboration with other UA departments and with external research teams. College of Engineering Dean Jeff Goldberg described Wong as "an outstanding faculty member whose research spans mechanical engineering, medicine and biology."
"Dr. Wong strongly complements the college's goals of solving important problems by working on interdisciplinary teams in areas that are not traditionally engineering oriented," Goldberg said. "Our aim is to be a strong partner with both campus and external research teams, and with faculty members like Dr. Wong we can achieve that goal in our key research areas."
Wong's research project is seeking the answer to a crucial question in tissue regeneration: How do the cells of a tissue know how to organize into structures that are much bigger than themselves?
"This project will investigate the fundamental rules of cells that collectively drive complex tissue architectures," Wong said. His research will look at how individual cells know what they are supposed to do without a central coordinator or a blueprint. "We aim to study, understand, and control how nature builds complex tissue," he said.
Wong is director of the UA's Systematic Bioengineering Laboratory, which weaves bio, nano and information technologies together to advance what is known about design rules at a cellular level.
"While we have the technologies to study nature at the molecular level, conversely, nature provides an excellent model to develop even better nanotechnologies," Wong says on his lab's website. Wong's lab develops tools and approaches to understand complex biological systems.
He is also researching how to control and mimic what he calls the "fantastic designs" found in cells and tissues. He describes this field of study as "systematic bioengineering technologies" and says it has "great potential in revolutionizing medical science and the concept of nanotechnology we think of today."