

## Engineering at NSF: Directions and Opportunities

A Presentation for the University of Arizona April 2, 2009

Michael M. Reischman
Deputy Assistant Director
Directorate for Engineering



#### Major **Departments**

Homeland Security

Energy

Agriculture

Health and **Human Services** 

> Environmental **Protection** Agency

Regulatory

**Smithsonian** Institution

Other Agencies

#### **Staff Offices Office of Management** and Budget

Science Advisor, Office of **Science and Technology Policy** 

> Other Boards and Councils

> > Defense

**Transportation** 

Commerce

Interior

Independent Agencies

**National** Science **Foundation** (NSF)

**National** Aeronautic and Space Administration

Nuclear Commission



### NSF's Origin, Mission, and Goals

- Independent agency established in 1950 by NSF Act: "To Promote Progress of Science," and "Advance National Health, Prosperity, and Welfare," and "Secure the National Defense"
- Support basic research and education across science and engineering
- Uses grant mechanism
- Maintains low overhead and extensive automation
- Discipline-based structure with cross-disciplinary mechanisms
- Uses "rotators" or IPAs
- Works with the National Science Board



### NSF by the Numbers

| •  | \$6.13 B | FY 2008 Appropriations received                  |  |  |  |  |
|----|----------|--------------------------------------------------|--|--|--|--|
|    | \$6.49 B | FY 2009 Current Plan                             |  |  |  |  |
|    | 4%       | NSF's share of total annual federal spending for |  |  |  |  |
|    |          | R&D                                              |  |  |  |  |
|    | 44%      | NSF's share of federal funding for non-medical   |  |  |  |  |
|    |          | basic research at academic institutions          |  |  |  |  |
|    | 1,900    | Colleges, universities, and other institutions   |  |  |  |  |
|    |          | receiving NSF funding in FY 2008                 |  |  |  |  |
|    | 11,162   | Competitive awards funded in FY 2008             |  |  |  |  |
|    | 44,000   | Students supported by NSF Graduate Research      |  |  |  |  |
|    |          | Fellowships since 1952                           |  |  |  |  |
|    | 44,400   | Proposals evaluated in FY 2008 through a         |  |  |  |  |
| ò  |          | competitive merit review process                 |  |  |  |  |
| OF | 197,000  | People NSF supports directly (researchers,       |  |  |  |  |
| 1  |          | postdoctoral fellows, trainees, teachers, and    |  |  |  |  |
|    |          | students)                                        |  |  |  |  |
| 4  | 248,000  | Proposal reviews conducted in FY 2008            |  |  |  |  |
| #  | 1,300    | Approximate number of full-time NSF personnel    |  |  |  |  |
|    | 150      | Approximate number of NSF "rotators" (IPAs)      |  |  |  |  |
|    |          |                                                  |  |  |  |  |





#### NSF's Vision

Advancing discovery, innovation, and education beyond the frontiers of current knowledge, and empowering future generations in science and engineering





### National Science Foundation

National Science Board (NSB)

**Director** and Deputy Director

Office of Cyberinfrastructure

Office of Equal Employment Opportunity Programs

Office of the General Counsel

Office of Integrative Activities

Office of International Science & Engineering

Office of Legislative & Public Affairs

**Office of Polar Programs** 

Inspector General (OIG)

**Biological** 

Sciences

(BIO)

Office of the

Computer & Information Science & Engineering (CISE)

Engineering (ENG)

Geosciences (GEO)

Mathematical & Physical Sciences (MPS) Social, Behavioral, & Economic Sciences (SBE)

Education & Human Resources (EHR) Budget, Finance, & Award Management (BFA)

Information & Resource Management (IRM)



## OSTP/OMB 2008 Research Priorities\*

- Homeland Security
  - > Prevention, Detection, & Remediation of NCB Threats
  - > Medical Countermeasures and Biosurveillance Networks
- Energy Security
  - > Diversified Energy Sources and Renewables
- Advanced Networking and High-End Computing
  - > Supercomputing & Cyberinfrastructure
- National Nanotechnology Institute
- Environment
  - Global Climate Change Science and Technology
  - Global Supply of Fresh Water
- Understanding Complex Biological Systems

\*See www.ostp.gov/html/M-06-17.pdf



### **NAE Grand Challenges**

- Make solar energy economical
- Provide energy from fusion
- Develop carbon sequestration methods
- Manage the nitrogen cycle
- Provide access to clean water
- Restore and improve urban infrastructure

- Advance health informatics
- Engineer better medicines
- Reverse-engineer the brain
- Prevent nuclear terror
- Secure cyberspace
- Enhance virtual reality
- Advance personalized learning
- Engineer the tools of scientific discovery



### NSF Research and Related Activities

|                                                 | FY 2008    | FY 2009    | Amount   | Percent |
|-------------------------------------------------|------------|------------|----------|---------|
|                                                 | Actual     | Request    | Change   | Change  |
| Biological Sciences                             | \$611.49   | \$675.06   | \$63.57  | 10.4%   |
| Computer & Information Science & Engineering    | 534.07     | 638.76     | 104.69   | 19.6%   |
| Engineering (includes SBIR/STTR)                | 636.32     | 759.33     | 123.01   | 19.3%   |
| Geosciences                                     | 752.01     | 848.67     | 96.66    | 12.9%   |
| Mathematical & Physical Sciences                | 1,166.30   | 1,402.67   | 236.37   | 20.3%   |
| Social, Behavioral & Economic Sciences          | 214.94     | 233.48     | 18.54    | 8.6%    |
| Office of Cyberinfrastructure                   | 185.17     | 220.08     | 34.91    | 18.9%   |
| Office of International Science and Engineering | 41.3       | 47.44      | 6.14     | 14.9%   |
| U.S. Polar Research Programs                    | 442.22     | 490.97     | 48.75    | 11.0%   |
| Integrative Activities                          | 236.17     | 276        | 39.83    | 16.9%   |
| Arctic Research Commission                      | 1.47       | 1.53       | 0.06     | 4.1%    |
| Total, R&RA                                     | \$4,821.46 | \$5,593.99 | \$772.53 | 16.0%   |



### **Developing ENG Themes**

Ideas and Capabilities of Engineering Research Community (Advisory Committee, Workshops, PDs, PIs, NAE, other agencies)

National
R&D Needs
(OSTP,
America
COMPETES
Act, ARRA,
Obama/Bide
n S&I Plan)

ENG Research & Education Themes

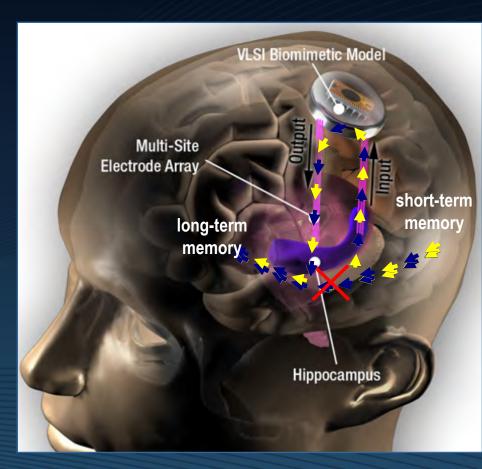
Financial
Guidance
(Office of
Management
and Budget)



### **ENG Mission and Vision**

- Mission: To enable the engineering and scientific communities to advance the frontiers of engineering research, innovation and education, in service to society and the nation.
- Vision: ENG will be the global leader in advancing the frontiers of fundamental engineering research, stimulating innovation, and substantially strengthening engineering education.




## ENG Research and Education Themes

- Cognitive engineering: Intersection of engineering and cognitive sciences
- Competitive manufacturing and service enterprises
- Complexity in natural and engineered systems
- Energy, water, and the environment
- Systems nanotechnology



### Cognitive Engineering

- ENG invests in improving understanding of the brain and nervous system to enable the engineering of novel systems and machines
- Examples include:
  - Devices that augment the senses
  - Intelligent machines that analyze and adapt



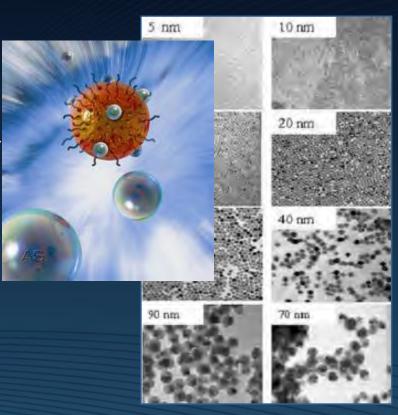
A neural prosthesis restores cognitive function lost due to damage or degenerative disease.

Credit: Biomimetic MicroElectronic Systems ERC, University of Southern California



## Competitive Manufacturing and Service Enterprises

- ENG enables research to catalyze and optimize multiscale manufacturing and service delivery
- Examples include:
  - Achieving perfect atomicand molecular-scale
     manufacturing
  - Understanding & optimizing decision-making in service industries




The time needed for vaccine design, production, and administration must all be balanced.



## Competitive Manufacturing and Service Enterprises

- Commercial-scale production of affordable, high-quality, multi-use nanomaterials
  - Nanocrystals for separations and pollution control
  - Nanotubes for medical therapies and chemical and biological sensors

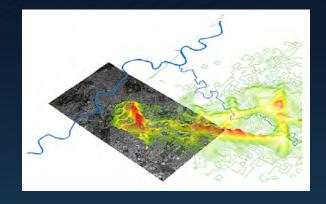


Various sizes of high quality Fe<sub>3</sub>O<sub>4</sub> nanocrystals and Fe<sub>3</sub>O<sub>4</sub> beads.



## Complexity in Engineered and Natural Systems

- ENG research addresses unifying principles that enable modeling, prediction, and control of emergent behavior in complex systems
- Engineering seeks
  - Predictable behavior
  - Optimization
  - Consistency of operation




Complex robotic systems can selfassemble, self-organize, and exhibit emergent behavior. These structures will self-assemble at disaster sites.



## Complexity in Engineered and Natural Systems

- Addresses unifying principles that enable modeling, prediction, and control of emergent behavior in complex systems
- Examples include:
  - Improving structural performance during disasters through advanced materials
  - Advancing quantum information processing



Combining maps (gray square) and density of cell-phone usage (shown as red and yellow 3-D peaks) can yield information about how a complex system responds to unplanned events. Dahleh, 0735956.

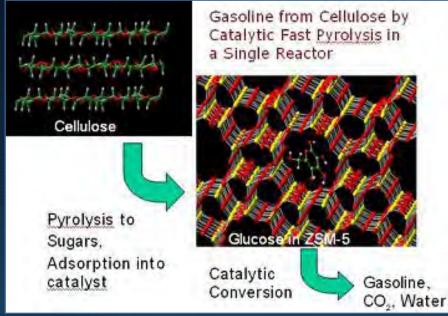


## Energy, Water, and the Environment

- ENG supports breakthroughs essential to the provision of energy and water in an environmentally sustainable and secure manner.
- Examples include:
  - Developing quantitative understanding of energy environment interactions
  - Researching materials and systems to increase use of alternative energy sources



Dr. Efraín O'Neill-Carrillo describes solar energy and power quality to a group of Hispanic high school students. His CAREER project contributes to the research and workforce development needed to move towards a more sustainable energy future.

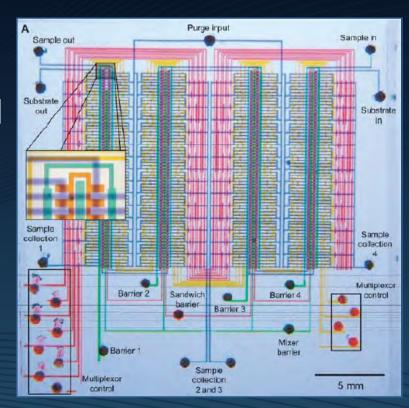



## Energy, Water, and the Environment

#### Biofuels

- > Catalysis
- > Synthetic biology






In one reactor, cellulose is broken up into sugar fragments which interact with a catalyst to become aromatic compounds used for gasoline.



### Systems Nanotechnology

- ENG supports research to develop active and complex nanosystems and integrate them into:
  - > Biology and medicine
  - > Computing
  - > Communications
  - Energy
- Examples include:
  - Nanomechanical systems for control and sensing
  - Smart tools for medical diagnosis and treatment



Integrated circuits that are smaller and faster are possible with microfluidics systems built from or incorporating nanocomponents. Ferreira, 0328162. 20



#### **ENG Divisions**

#### **Dollars in Millions**

Emerging Frontiers in Research and Innovation (EFRI) \$29.00 Assistant Director
Dr. Thomas Peterson
Deputy Assistant Director
Dr. Michael Reischman

\$759.33

Senior Advisor for Nanotechnology

Program Director for Diversity & Outreach

Engineering
Education and
Centers
(EEC)

\$119.85

Chemical,
Bioengineering,
Environmental,
and Transport
Systems
(CBET)
\$173.34

Civil,
Mechanical, and
Manufacturing
Innovation
(CMMI)

\$201.88

Electrical,
Communications,
and Cyber
Systems
(ECCS)

\$94.36

Industrial Innovation and Partnerships (IIP)

\$140.90



### Chemical, Bioengineering, Environmental, and Transport Systems (CBET)

Deputy Division Director Bob Wellek **Division Director**John McGrath

Senior Advisor Marshall Lih

Chemical, Biochemical, and Biotechnology Systems

> Catalysis and Biocatalysis John Regalbuto

Chemical and Biological Separations Rose Wesson

Process and Reaction Engineering Maria Burka

Biotechnology, Biochemical, and Biomass Engineering Fred Heineken Biomedical Engineering and Engineering Healthcare

> Bioengineering, Interdisciplinary, and Centers

Aleksandr Simonian

Biomedical Engineering Semahat Demir

Biophotonics,
Advanced Imaging,
and Sensing
for Human Health
Leon Esterowitz

Research to Aid Persons with Disabilities Ted Conway Environmental Engineering and Sustainability

> Energy for Sustainability Trung Van Nguyen

Environmental Engineering Clark Liu

Environmental Implications of Emerging Technologies
Paul Bishop

Environmental Sustainability Bruce Hamilton

Environmental Technology Cynthia Ekstein Transport and Thermal Fluids

Thermal Transport
Processes
Theodore Bergman

Interfacial Processes and Thermodynamics Bob Wellek

> Particulate and Multiphase Processes Marc Ingber

Fluid Dynamics
Bill Schultz

Combustion, Fire, and Plasma Systems
Phil Westmoreland

NSF Directorate for Engineering



#### **CBET Areas of Interest**

- Post-genomic engineering, metabolic engineering, and tissue engineering
- Biomedical photonics and sensing, medical technology innovation, environmental and personal assistive technology for persons with disabilities
- Complex environmental systems, especially with respect to understanding the fate and transport of surface and groundwater pollutants; novel processes for waste treatment; industrial ecology; and technologies for avoiding pollution
- The development and integration of new principles and knowledge underpinning use-inspired products and services based on chemical, fluid-thermal and biological transformations of energy and matter
- Nanoscale science and engineering, safety and security, environmentally-friendly and energy-focused processes and products, and smart manufacturing and processing
- Fundamental aspects of fluid, thermal and mass transport processes, and research to support the development of renewable energy sources

#### Civil, Mechanical, and Manufacturing Innovation (CMMI)

Interdisciplinary and **Cross-Divisional Activities** Bruce Kramer

> **Advanced Manufacturing**

Manufacturing and **Construction Machines** and Equipment George Hazelrigg

Manufacturing **Enterprise Systems** Cerry Klein

**Material Processing** and Manufacturing Jocelyn Harrison

**Nano Manufacturing** Shaochen Chen

**Division Director** 

Bruce Kramer \* **Deputy Director** George Hazelrigg

\* Acting

**Systems Engineering** and Design

Mechanics and **Engineering Materials** 

> Geomechanics and **Geotechnical Systems** Richard Fragaszy

**Materials and Surface Engineering** Clark Cooper

**Mechanics of Materials** Ken Chong

Nano/Bio Mechanics **Demitris Kouris** 

Structural Materials and **Mechanics** Lawrence Bank

Resilient and Sustainable Infrastructures

**Civil Infrastructure Systems** Dennis Wenger \*

> **NFFS** Joy Pauschke

Geotechnical **Engineering** Richard Fragaszy

**Hazard Mitigation and** Structural Engineering M.P. Singh

Infrastructure Mgmt. and Extreme Events Dennis Wenger

**Control Systems** 

Suhada Jayasuriya

**Dynamical Systems** Eduardo Misawa

**Engineering Design** and Innovation Christina Bloebaum

**Operations Research** Robert Smith

Sensors and **Sensing Systems** Shih Chi Liu

**Service Enterprise Systems** Cerry Klein

NSF Directorate for Engineering



#### **CMMI** Areas of Interest

- Supports fundamental research in design, manufacturing, and industrial engineering
- Seeks to advance economic competitiveness and benefit society
- Emphasizes environmentally-benign manufacturing and a sustainable industrial economy



### **CMMI** Areas of Interest

- Two submission windows each year: Oct. 1 and Feb. 15.
- Supported areas include:
  - Dynamics and control, mechanics and materials, nano- and bio-mechanics, sensing for civil and mechanical systems, simulation—based engineering science
  - Management of risks induced by earthquakes and other natural and technological hazards, critical infrastructure protection
  - Infrastructure development and management, geotechnology, structures



### Electrical, Communications, and Cyber Systems (ECCS)

**Senior Engineering Advisor** Lawrence Goldberg

Acting Division Director Lawrence Goldberg

#### Electronics, Photonics, and Device Technologies

Optoelectronics; Nanophotonics; Ultrafast/Extreme Ultra-Violet Technologies Eric Johnson

Micro/Nanoelectronics; NEMS/ MEMS; Bioelectronics; Sensors Vacant

Molecular, Spin, Organic, and Flexible Electronics; Micro/ Nanomagnetics; Power Electronics Pradeep Fulay

Microwave Photonics;
Millimeter, Sub-millimeter, and
Terahertz Frequency Devices
and Components
Usha Varshney

### Integrative, Hybrid, and Complex Systems

Optical, Wireless, and Hybrid Communications Systems; Inter and Intra-chip Communications; Mixed Signals

Andreas Weisshaar

Micro and Nano Systems; Systems-on-a-chip; Diagnostic and Implantable Systems

Yogesh Gianchandani

Cyber-Physical Systems; Next-Generation Cyber Systems; Signal Processing Scott Midkiff

### Power, Controls, and Adaptive Networks

Embedded, Distributed and Adaptive Control; Sensing and Imaging Networks; Systems Theory; Telerobotics Radhakishan Baheti

Power and Energy Systems and Networks and their Interdependencies; Power Drives; Renewable/Alternative Energy Sources Dagmar Niebur

Adaptive Dynamic
Programming; Quantum and
Molecular Modeling and
Simulations; Neuromorphic
Engineering
Paul Werbos



#### **ECCS Areas of Interest**

Electronics, Photonics, and Device Technologies EPDT

- **✓** Bioelectronics
- ✓ Electromagnetics
- ✓ Flexible Electronics
- ✓ MEMS/NEMS
- √Micro/Nanoelectronics
- √Micro/Nanomagnetics
- √ Microwave Photonics
- √ Molecular Electronics
- ✓ Nanophotonics
- **√Optoelectronics**
- ✓ Power Electronics
- √Sensors and Actuators
- **✓ Spin Electronics**

Integrative, Hybrid, and Complex Systems
IHCS

- ✓ Nanosystems/Microsystems/ Macrosystems
- √ Cyber Systems and Signal Processing
- ✓ Nano and Microsystems
  - √System-on-a-chip
  - √System-in-a-package
- √RF and Optical Wireless and Hybrid Communications Systems
  - ✓Inter- and Intra-chip Communications
  - √ Mixed Signals

Power, Controls, and Adaptive Networks
PCAN

- Adaptive Dynamic Programming
- ✓ Alternate Energy Sources
- Embedded, Distributed and Adaptive Control
- ✓ Neuromorphic Engineering
- Power and Energy Systems and Networks
- ✓ Quantum and Molecular Modeling and Simulation of Devices and Systems
- √ Sensing and Imaging Networks
- √ Telerobotics



### Engineering Education and Centers (EEC)

#### **Division Director**

Allen Soyster

Engineering Centers Lynn Preston

Senior Staff Associate Win Aung Engineering
Education
Sue Kemnitzer

Diversity
and Pre-College
Education
Mary Poats

University
Education
John Daniels

Nanoscale
Science
and Engineering
Deborah Jackson
Barbara Kenny
Vacant

Biotechnology and Health Care Lynn Preston

Energy,
Sustainability, and
Infrastructure
John Daniels,
Barbara Kenny

Microelectronics, Sensing, and IT Deborah Jackson Nanotechnology Undergraduate Education Mary Poats

International Research and Education in Engineering Win Aung

Bioengineering and
Bioinformatics
Summer Institutes
Mary Poats

#### Engineering Education

John Daniels Sue Kemnitzer Sally Wood

Research
Experiences for
Teachers
Mary Poats

Research
Experience for
Undergrads
Esther Bolding



#### **EEC Areas of Interest**

- Centers that collaborate with industry to promote innovative research and education
- Centers that promote partnerships with small business and international researchers
- Focused efforts that integrate research into new advances in undergraduate and PhD engineering education, and partner with K-12 pipeline innovators



### **Engineering Centers**

- Supports centers that collaborate with industry to promote innovative research and education
- Engineering Research Centers
  - > 15 in operation, including 5 new for 2008
    - Funding for 10 years
  - > 2-year process from solicitation to funding
  - > New solicitation released in March 2009
- Nanoscale Science and Engineering Centers
  - 6 of 10 are engineering
  - 2007 solicitation established 2 Centers for the Environmental Implications of Nanotechnology



## Engineering Education Research

- Addresses educational goals of the engineering community
- Supports focused efforts that integrate research into advances in undergraduate and PhD engineering education, and partner with K-12
   pipeline innovators
- Curriculum and Infrastructure



### Industrial Innovation and Partnerships (IIP)

**AAAS Fellow**James Brown

**Division Director** Kesh Narayanan

#### Academic Partnerships Donald Senich

Grant Opportunities
for Academic
Liaison with
Industry

Donald Senich

Industry/University Cooperative Research Centers

Rathindra DasGupta Glenn Larsen

Partnerships for Innovation

Sara Nerlove

- Advanced Electronics
- Advanced Manufacturing
- Advanced Materials
- Biotechnology
- Civil Infrastructure Systems
- Energy and the Environment
- Fabrication and Processing Technology
- Health and Safety
- Information and Communications
- Quality, Reliability and Maintenance
- System Design and Simulation

### Small Business Partnerships

Joe Hennessey

#### Advanced Materials and Manufacturing

Cheryl Albus, Vacant

#### Biotechnology and Chemical Technology

Gregory Baxter, Cynthia Znati, Vacant

#### **Electronics**

Juan Figueroa, William Haines, Murali Nair

#### Information Technology

Errol Arkilic, Ian Bennett

#### **Special Topics**

James Rudd, George Vermont



## Industrial Innovation and Partnerships (IIP)

- Current programs supporting academic-industry partnerships
  - > Small Business Innovation Research (SBIR)
  - > Small Business Technology Transfer Research (STTR)
  - > Industry/University Cooperative Research Centers (I/UCRC)
  - > Partnerships for Innovation (PFI)
  - Grant Opportunities for Academic Liaison with Industry (GOALI)
- IIP supports a wide spectrum of Technology Areas
  - > Advanced Materials
  - > Manufacturing
  - > Civil Infrastructure Systems
  - Chemical-Based Technologies
  - Energy and Environment
  - Biotechnology
  - > Electronics
  - Information-based Technologies



## Emerging Frontiers in Research and Innovation



Auto-Reconfigurable Engineered Systems (ARES)

Scott Midkiff

Cellular and Biomolecular Engineering (CBE)

Fred Heineken

Cognitive Optimization

(COPN)
Paul Werbos

Semahat Demir

Resilient and Sustainable Infrastructures (RESIN)

Joy Pauschke Bill Schultz Bruce Hamilton **FY 2009** 

BioSensing and BioActivation (BIO)

Shih-Chi Liu Yogesh Gianchandani

Hydrocarbons from Biomass (HYBI)

John Regalbutto Dagmar Niebur



# Emerging Frontiers in Research and Innovation (EFRI)

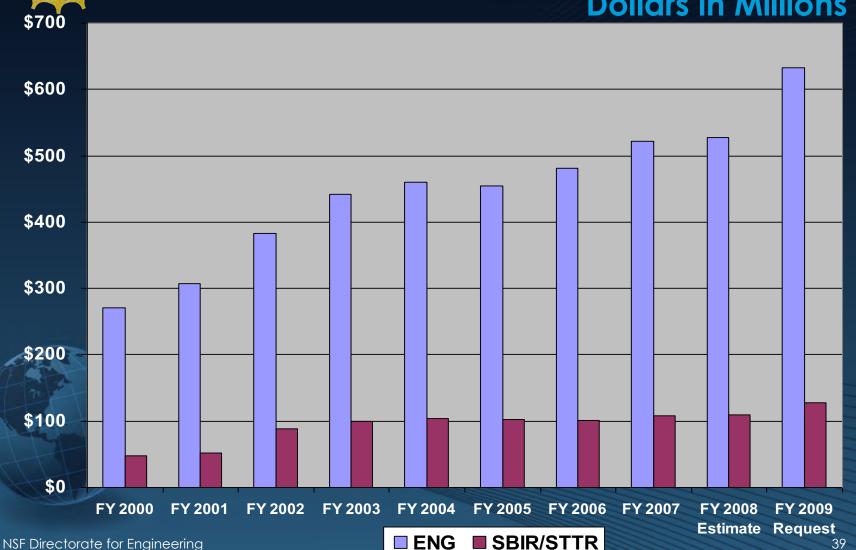
- EFRI will support higher risk, higher payoff opportunities leading to:
  - > new research areas for NSF, ENG, and other agencies
  - > new industries/capabilities resulting in a leadership position
  - > significant progress on advancing a "grand challenge"
- Successful topics would likely require:
  - > small- to medium-sized interdisciplinary teams
  - the necessary time to demonstrate substantial progress and evidence for follow-on funding through other established mechanisms
- The current investment for EFRI totals \$25 million for 4-year awards at \$500k per year.
- Sohi Rastegar, Office Director



#### **EFRI** Criteria

- TRANSFORMATIVE- Does the proposed topic represent an opportunity for a significant leap or paradigm shift in a research area, or have the potential to create a new research area?
- NATIONAL NEED/GRAND CHALLENGE- Is there potential for making significant progress on a current national need or grand challenge?
- BEYOND ONE DIVISION- Is the financial and research scope beyond the capabilities of one division?
- COMMUNITY RESPONSE- Is the community able to organize and effectively respond (but not in very large numbers; i.e., it is an "emerging" area)?
- ENG LEADERSHIP- Are partnerships proposed, and if so, does NSF/ENG have a lead role?

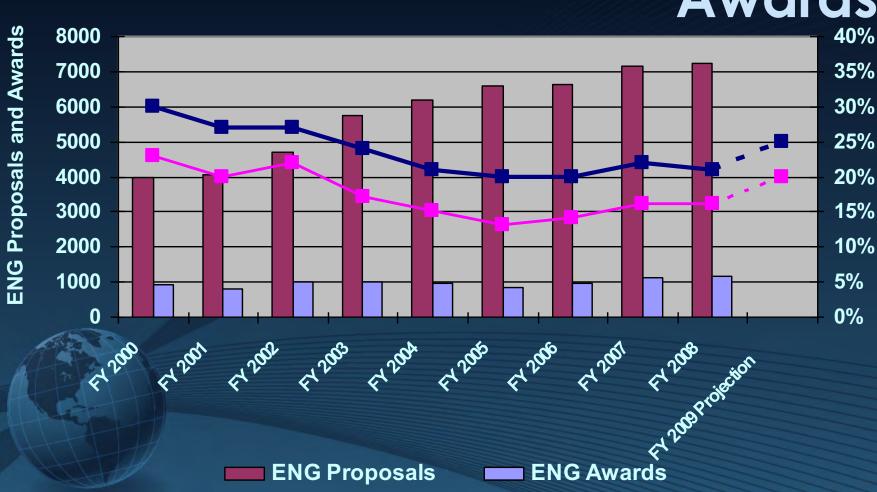



### Economic Stimulus Package: American Recovery and Reinvestment Act (ARRA)

- NSF Support \$3B
- To be Spent primarily in FY 2009
- Primary Focus: Improving Success Rate (currently about 16% in ENG)
- Emphasis on CAREER Awards
- No new solicitations\* or Supplements
- Additional Accountability and Reporting

<sup>\*</sup>Exceptions are ARI, MRI and PSM

### **ENG** and SBIR/STTR Budget History


**Dollars in Millions** 



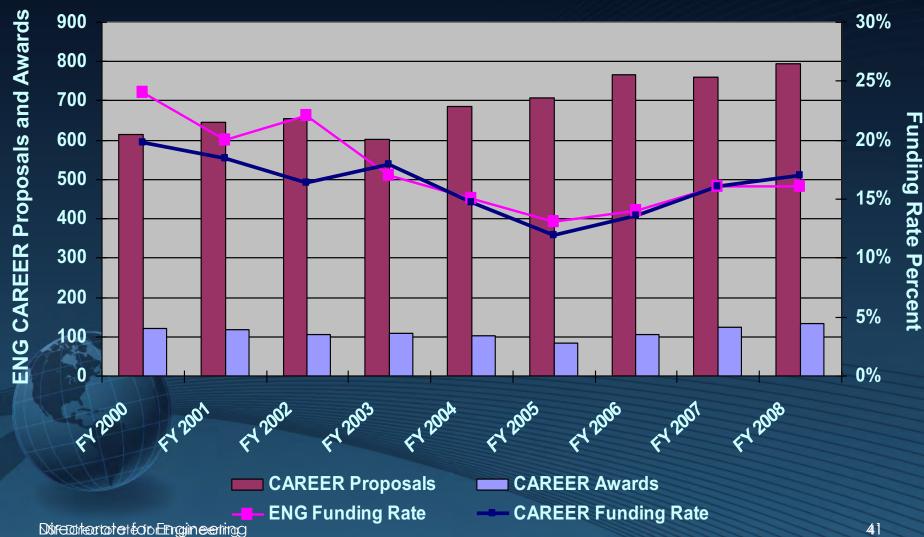


# ENG and NSF Research Grant Proposals and Awards

**NSF Funding Rate** 

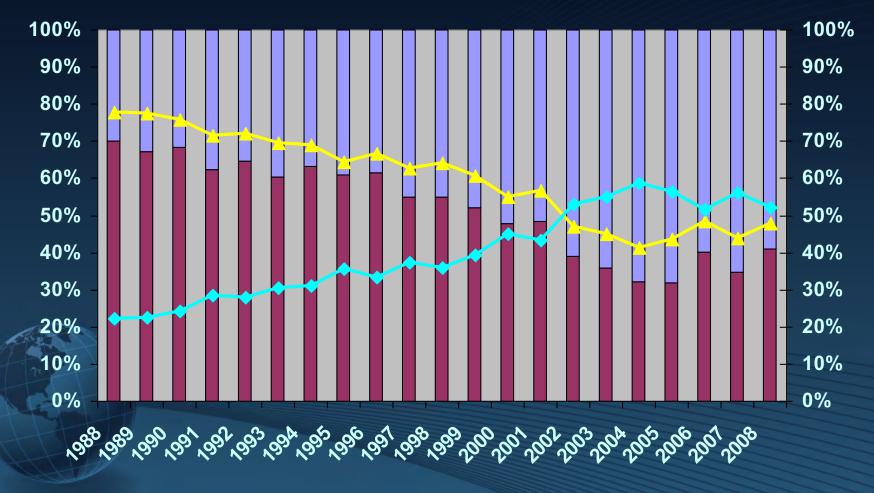


**ENG Funding Rate** 


40

**Funding Rate** 

Percent




## ENG and NSF CAREER Proposals and Awards





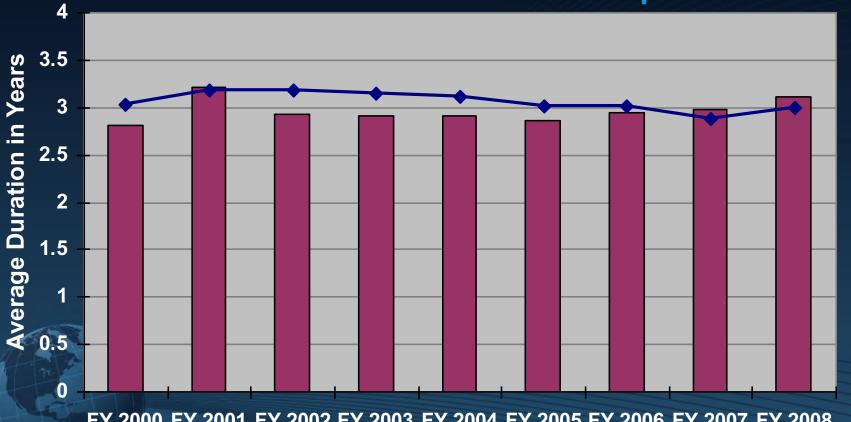
## Single vs. Multiple Investigator ENG Awards



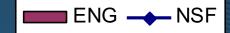
■ Single % by \$ ■■ Multi % by \$ → Single % by # → Multi % by #

### Annual Award Size Averages for ENG Research Grants



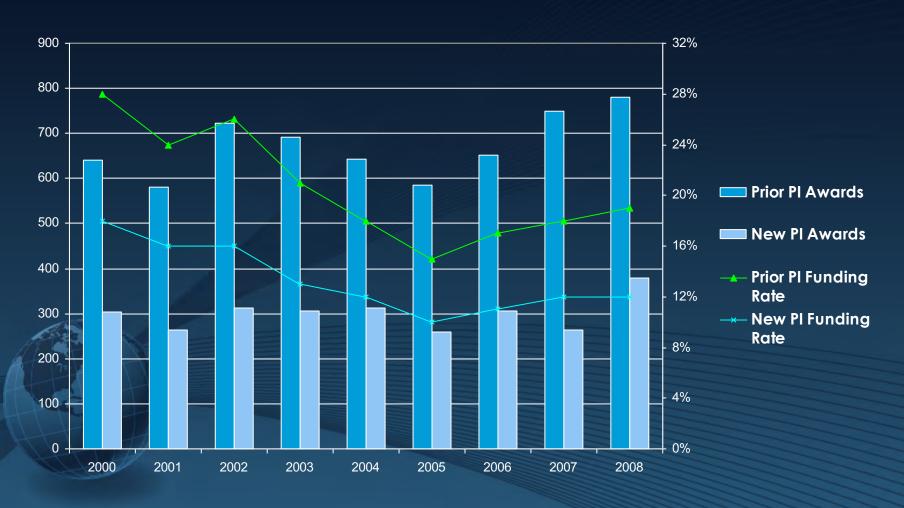

Award size data annualized.





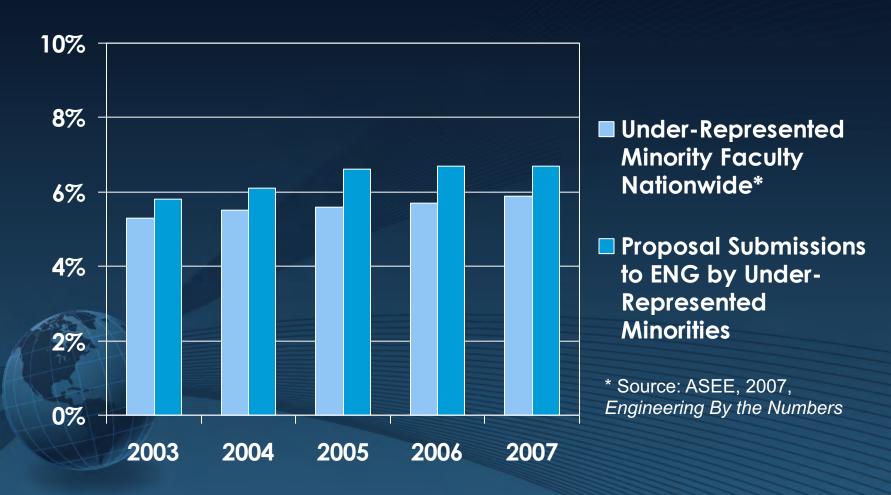

### Average Award Duration in Years

**ENG Research Grants in Comparison to NSF** 



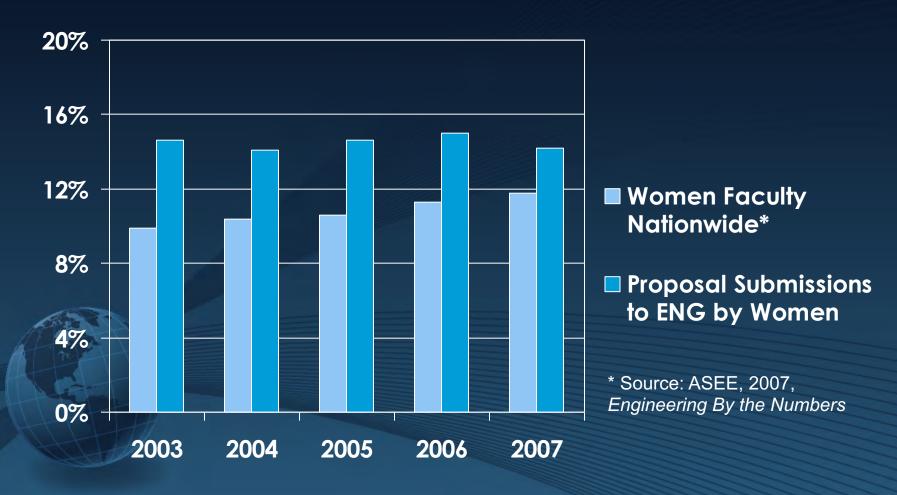

FY 2000 FY 2001 FY 2002 FY 2003 FY 2004 FY 2005 FY 2006 FY 2007 FY 2008






### ENG Success Rates for Prior and New Pls



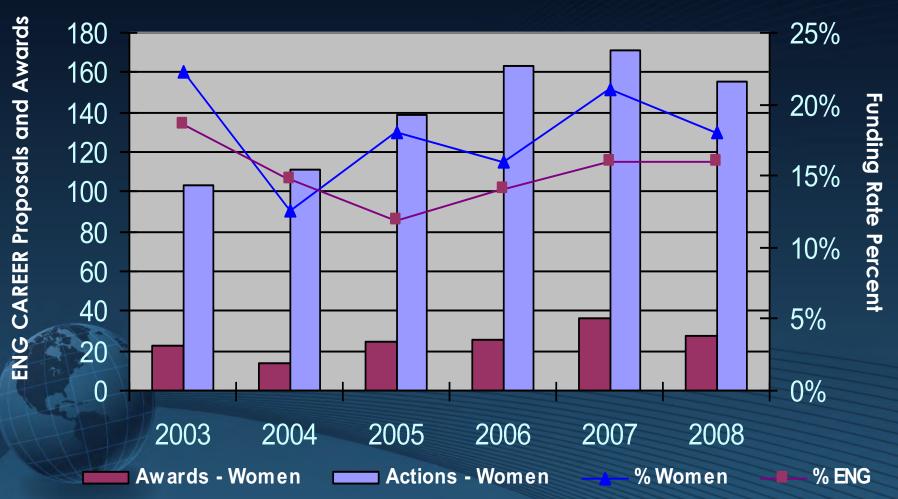



# Proposal Submissions to ENG by Under-Represented Minorities



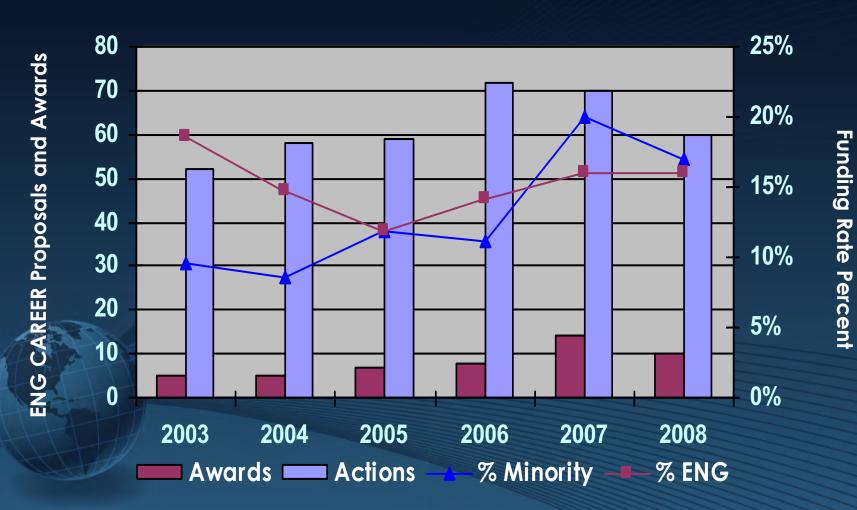



# Proposal Submissions to ENG by Women




### Research Proposal Funding Rates for All ENG, Women, and Minorities






### CAREER Funding Rates for Women and All ENG





#### CAREER Funding Rates for Under-Represented Minorities and All ENG





#### Resources

- Directorate for Engineering:
  - > http://www.nsf.gov/eng
- Funding Opportunities:
  - > http://www.nsf.gov/funding/
- E-mail
  - xxxxxxxxx@nsf.gov
- Phone
  - > 703.292.XXXX



#### Free Advice for Success...

or "I'm from the government and I'm here to help"

- It all starts with Dialog, a White Paper and a Short Bio
- Get involved in NSF Reviews: Panel or Mail
- Don't be afraid of Teams
- Spread Your Research Wings
- Deliver on Your Promises
- "No" is not Forever...Seek Feedback
- "....don't ever give up"