Mining the Heavens: In Conversation with Planetary Resources' Chief Engineer [UA Engineering Alum Chris Lewicki]
One such firm is Planetary Resources, which is currently winding up a KickStarter campaign aimed at raising public awareness about asteroid mining by offering the public access to a space telescope. Gizmag visits the company’s Bellevue, Washington headquarters and talks to the President and Chief Engineer, Chris Lewicki.
We were very excited about that. We got to 8,000 really quick, then it took forever to get to 9,000 and it was only yesterday that pushed us over the edge. It still has really good momentum today and we’re already planning lots of events leading up to the close of the campaign. What we're doing in crowdsourcing is unprecedented and certainly a brand new topic and everyone is watching it. You have early adopters, people who find out along the way, and as the clock ticks down those who don’t want to miss out on the action.
We wanted to make sure that what we were offering would be of sufficient interest to people and that the funds we were raising would go a ways towards offsetting some of the costs. Of course, what we’re raising isn't enough for designing, building and launching a spacecraft. This is only possible because we’re already doing this.
Your Kickstarter goal was a million dollars. That’s pretty much chump change for space technology, isn't it?
In the history of space exploration, NASA can spend a million dollars in a day, probably in a meeting, if they really need to. We’re a startup. We pursue our business like any other lean and agile startup would in that we want to be as efficient and competitive as possible. Asteroid mining is kind of audacious. It’s no secret it’s going to take us a little while to achieve that and we need to be a productive business toward that goal. Part of what we're doing with putting spacecraft into orbit is being able to leverage what we’re doing with other opportunities whether it’s straight science or astronomy or Earth sciences or, in the case of Kickstarter, consumer market.
Let me be the bank manager for the moment. Asteroid mining: It sounds a bit like you've been reading too much Robert Heinlein. Do really think that you can make asteroid mining into a paying business?
Oh, absolutely. We wouldn't be in this for any other reason. This is probably one of the greatest business opportunities that has existed in more than a century. We had the industrialisation of the US and the world in the 1800s and the 1900s. We’ve had the transportation industries that came out in the 20th century and in the 21st century we've got the internet that has connected everyone.
Our capacity as a species to move into an area, become the masters of that area, to improve the quality of life for everyone by using resources and developing businesses and creating economies means we’re at a point where we don’t want to constrained by the surface of this planet. Our mission statement is expanding the economic sphere of humanity off the surface of the planet.
The only thing that will do that outside of taxpayer dollars, which are finite and contested, is to create an economic engine and an economic reason for doing it. We fully believe that space resources are that economic engine.
To be able to use the resources of space, to explore space, imagine that if we were building railroads that we had to ship in everything from Europe. We didn't do that, of course. It’s all about using those resources locally, so in space the first resource we’re interested in is water.
Water is such a simple thing. Why would you ever need water? There’s plenty of it here on Earth. We’re not bringing water back to Earth. We don’t want to ship water into space because it’s very heavy and very expensive to send it there. Just to send a liter to the International Space Station it’s US$10,000 and to the Moon it’s $50,000.
Space habitats, space stations are going to need hundreds of thousands or millions of liters of water, but there are some asteroids 75 meters across that are water rich. Just one has enough hydrogen and oxygen to fuel every Space Shuttle that’s ever been launched. It’s useful for fuel, its useful for supporting life and it’s full-blown radiation shielding for all those people talking about going to Mars. So, that is a resource that is of near-term interest.
We can see this resource. As meteorites we can hold it in our hand. We can identify that it’s out there using telescopes and spectroscopy. Our job is to build Arkyd 100, 200, 300 spacecraft that will go out and take that remote data using a telescope. We’re like sending a geologist out to confirm if there’s enough water out there to develop.
I think that with what were developing, with the team we have, and the schedule we’re on that we’ll be doing the first bids of that during the 2020s – not only identifying it, but how to extract it.
That seems to be the big jump. Building a space telescope is 1960s technology, but this is not just bringing back asteroid samples, but materials in industrial quantities. Isn't that technology on another level?
It is a technological jump, but it’s a recognition that if you’re doing something for business reasons technology is brought to bear to solve problems. If you’re doing things for scientific reasons, there’s different motivations.
Shell Oil in the 1980s came to understand that there may be large reserves of oil in the deep ocean and we did not have the technology to extract that. But they made the multi-billion dollar investment to go explore what was out there and the technologies to build these offshore platforms – floating cities in the middle of the ocean – to go down through a mile of water where there’s hundreds of atmospheres of pressure, a corrosive salt water environment, and then drill a hole and go down another couple of miles.
They invested tens of billions of dollars and spent 10, 15 years creating the technology so that, today, they can make tens of billions of dollars from every one of those rigs. That technology, to my mind, is much more advanced than anything on Curiosity rover that we use to explore Mars. That was all private money, so if the opportunity exists, if there is an economic interest and a business motive to follow it, the technology is not a problem.
As a startup, Amazon.com went for years without making a profit. If you’re going to be bringing back water and that not until the 2020s, will your current efforts be able to keep Planetary Resources in the black until then?
In Arkyd 100 and all of the technology we’re developing, we’re in the middle of a second space race and it’s involving private investors and private developers. Whether it’s tourism or resources or exploration or launching capacity or orbiting habitats, there are all these different reasons why these companies have been created. What we have really been focused on is a bit of an audacious goal: asteroid mining.
In order for us ever to be able to do that, as I mentioned, we need to be a sustainable, lean business, so the technology we’re putting into the Arkyd 100 are innovations that the world has not yet seen and we’re being forced to do them because of the way we’re pursuing our goals with the constraints that we have as a private business.
What we are doing is of interest to NASA and to other government agencies and private companies and we have been very successful in taking our technologies, such as our communications technology, and working NASA and partnering with universities under contract doing work for NASA.
All of these helps offset our development costs, allows NASA to take advantage of our innovations, and allows us to leverage NASA towards our greater goals. So, it’s a little bit on the Amazon mode that we feel that being able to deploy a remote sensing capability in low Earth orbit very low cost, very responsibly and have that a very accessible platform is a general business activity and we've seen some interest that we anticipate will pay for themselves along the way.